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1. SUMMARY 

A smart way to prove a node’s identity without disclosing any information about the secret of 
that identity is through the use of Zero-Knowledge Proof (ZKP) based authentication protocol. 
There are several advantages of using this protocol over other authentication schemes. There are 
also few challenges to overcome in order to make ZKP protocol practical for general use. 

 
During this project, we accomplished the following tasks: 
 
(1) Implemented a prototype version of graph isomorphism based ZKP protocol. 
(2) Analyzed the implementation complexity of the ZKP protocol. 
(3) Investigated the selection of graphs that are suitable for ZKP implementation. 

 
 Our experiments related to task (3) indicate that the graphs selected for ZKP implementation 
must possess specific characteristics. While we developed the basic guidelines for this selection, 
our results are inconclusive and require additional experiments.  
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2. INTRODUCTION 

University of North Texas (UNT) is collaborating with the Air Force Research Laboratory 
(AFRL) in the design and development of ZKP protocol and in investigating its suitability for 
airborne networks. This research explores the implementation, integration, and certification of 
ZKP based authentication protocol for airborne networking applications. 

 
The most noteworthy benefit of this collaboration is the learning opportunities it is providing 

to the students at UNT. We hope to continue this collaboration and prepare the students for the 
challenging jobs in the field of information security at AFRL and other federal organizations.   

 
We have completed Phase I of this project (from 09/16/2008 to 12/31/2008). This report 

outlines the tasks accomplished during this period. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 

We chose to implement ZKP protocol based on Graph Isomorphism (GI). Graph 
isomorphism has been chosen because of its ease of implementation. The implementation details 
are presented in section 3.1.  

 
 
3.1 GRAPH ISOMORPHISM BASED ZKP PROTOCOL IMPLEMENTATION 

 
The Graph isomorphism based ZKP protocol is outlined below. 

 
A graph G2 is generated from another graph G1 using a secret permutation named π. In fact, 

G2 is obtained by relabeling the vertices of G1 according to the secret permutation π, while 
preserving the edges. This pair of graphs (G1 and G2) forms the public key pair and the 
permutation serves as the private key. Another graph named H is either obtained from G1 or G2 
using another random permutation, say ρ. Once the graph H is obtained, the prover (represents 
the new node seeking entrance to the network) sends it to the verifier who will challenge him to 
provide the permutation σ which can map H to either G1 or G2.  

 
For instance, if H is obtained from G1 and the verifier challenges the prover to map H to G1, 

then σ= ρ-1. Similarly, if H is obtained from G2 and the verifier challenges the prover to map H 
to G2, then σ= ρ-1.  On the other hand, if H is obtained from G1 and the verifier challenges the 
prover to provide the permutation to map H to G2, then σ= ρ-1○ π, which is a combination of ρ-1 

and π. In fact, ρ-1 will be applied to H to obtain G1 then, the vertices of G1 will be modified 
according to the secret π to get G2. Finally, if H is obtained from G2 and the verifier challenges 
the prover to map H to G1, then σ= ρ-1○ π-1. 

One can notice that in the first two cases, the secret π is not even used. Therefore, a verifier 
could only be certain of a node’s identity after many interactions. Moreover, we can also observe 
that during the whole interaction process, no clue was given about the secret itself, hence the 
name Zero Knowledge Proof. 
 

The MATLAB implementation of the ZKP protocol which is similar to the C implementation 
is presented.  The advantage of this implementation is that it allows us to verify the adjacency 
matrices at each level of the simulation and to evaluate the correctness of the algorithm. Both the 
C and MATLAB implementations are mainly based on the pseudo-code provided in [1].  In order 
to illustrate the logic used in the program, we considered a simple graph with 4 nodes. In 
practice, however, the graphs need to be very large, consisting of several hundreds of nodes, and 
present a GI complexity in the order of NP-complete. There are three functions that are used in 
the code, namely, “MakeIsomorphic”, “ApplyPermutation”, and  “CheckGraphs”.  
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a) “MakeIsomorphic” function 
 

This function is used to apply a random permutation (π or ρ) to a specific graph and to obtain 
another graph that is isomorphic to the original graph. For example,  the  declaration 
“G2=MakeIsomorphic(G1,pi,n)” is used to apply π to the graph G1 in order to obtain the graph 
G2. Note that the variable ‘n’ represents the number of nodes in the graph. 

 
b) “ApplyPermutation” function 

 
This function is used after receiving the challenge response from the prover. In fact, once the 

verifier receives σ from the prover, his/her objective is to apply that permutation to the graph H 
to check if he/she will get the expected response (G1 or G2). This function is declared as follows, 
“ApplyPermutation(H,sigma,n)” where σ is being applied to a graph H. 
 

c) “CheckGraphs” function 
 

After the verifier  receives the response σ and applies it to H to obtain another graph that we 
will name for explanation purpose as R, the “CheckGraphs” function is used to check whether or 
not R = G1 or R = G2 depending on the case. The function is declared as: 
“CheckGraphs(G2,R,n).” Here, for example, the function is used to compare both graphs G2 and 
R.  
 

The implemented algorithm proceeds as follows: First, the simulator asks for the value of “n” 
which represents the size of the graphs. Once the size is specified, the user has the choice to 
either start the interaction or to abort the process. The user is then prompted to input the values 
of the graph G1. After all the values are collected, the user is asked for the value of the secret π, 
then for the value of the random permutation ρ. The user is then asked to choose the graph from 
which to create the graph H and the graph that the verifier could ask the prover to generate when 
challenged. After these graphs specified, the user is finally asked for the value of σ.  Once the 
value of σ inserted, the simulator verifies all the inputs and declares if the prover is correct or 
incorrect. In other words, the simulator verifies if the prover knows the secret or not. Finally, the 
user is asked to repeat the process if he/she is willing to. 
 

In order to check the correctness of the algorithm we walk through the code with some input 
examples and validate the results. The simulations were performed with the values of n, π, ρ and 
the graph G1 shown below. 
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Figure 1: Graph G1 and its adjacency matrix representation 

 
• If H is obtained from G1 (H = G1* ρ) and the verifier challenges for G1, we will have :   

σ = ρ-1 = {1, 4, 2, 3} 
 

To obtain the inverse of ρ = {1, 3, 4, 2}, we assign indices from 1 to 4 to its vertices, and then 
process as follows. The first index “1” is at position 1, so its position is not changed. Index 2 is at 
the position 4; so the second vertex of ρ-1 is 4. Index 3 is at the second position; therefore the 
next vertex in ρ-1 is 2. Finally, index 4 is at the third position; therefore, the last element of ρ-1 is 
3. Following this logic, the vertices of ρ-1 are obtained. 
 

• If H is obtained from G2 (H = G2* ρ) and the verifier challenges for G2, we will have   
σ = ρ-1 = {1, 4, 2, 3} 

 
• If H is obtained from G1 (H = G1* ρ) and the verifier challenges for G2, we will have   

σ = ρ-1○ π = {1, 4, 2, 3} ○ {2, 3, 1, 4} = {2, 4, 3, 1} 
 

 
n = 4 

π = {2, 3, 1, 4} 
ρ = {1, 3, 4, 2} 
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To calculate σ, we consider the vertices of ρ-1 as indices in π and observe which values they 
are associated with.  The process consists of the following steps: 
 

The first vertex of π is 2. 
The fourth vertex of π is 4. 
The second vertex of π is 3. 
The third vertex of π at is 1. 

 
• If H is obtained from G2 (H = G2* ρ) and the verifier challenges for G1, we will have   

σ = ρ-1○ π-1 = {1, 4, 2, 3} ○ {3, 1, 2, 4} = {3, 4, 1, 2} 
 

Now that all the parameters are set, we will proceed to the actual simulation. Note that the 
permutations are applied to the rows as well as the columns of the adjacency matrix. 

 
Simulation results will be presented next in order to illustrate the three different cases (i.e. σ 

= ρ-1, σ = ρ-1○ π, and σ = ρ-1○ π-1). 
 

  

 
Figure 2: Illustration of the case in which H = G1 *  and when the verifier challenges the prover to map H to 

G1 
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Once the first simulation is finished, we obtained G2 = G1* π and H = G1* ρ as shown in 
figure 3 and figure 4 respectively. Different scenarios of ZKP protocol are illustrated in figures 5 
through 9. 
 
 

       
 
 
 
 
 

 
Figure 3: Graph G2 in two different forms and its adjacency matrix 
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Figure 4: Graph H = G1 *  and its adjacency matrix 

 
Figure 5: Illustration of the case in which H = G2 *  and the verifier asks the prover to map H to G2 
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Figure 6: H = G2 *  and its adjacency matrix representation 

 

Figure 7: Illustration of the case in which H = G1 *  and the verifier the prover to map H to G2 
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Figure 8: Illustration of the case in which H = G2 *  and the verifier challengers the prover to map H to G1 
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Let us now consider some of the cases when the prover provides wrong responses to the 
challenges. 
 
 

       
Figure 9: Illustration of some of the cases in which the prover provides incorrect answers 
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One can notice, for example, that when σ is incorrect (σ= {1, 2, 4, 3}) instead of the correct 
response σ = ρ-1○ π = {2, 4, 3, 1}, the program displays the message asserting that the prover 
does not know the secret.  

    
Note also that this code has been written for the simple purpose of verifying the steps 

involved in the ZKP protocol. If we consider the case where a computer acts as the verifier and a 
user acts as the prover, the user will not be the one inputting the values of π or deciding the 
graph for the challenge. In fact, such an implementation will only ask the user to input H, then to 
input σ.  
 

3.2 CLARIFICATION OF “CREATESIGMA” FUNCTION 

 
      Throughout the implementation of the ZKP protocol, the “CreateSigma” which is used to 
determine sigma (the response to the verifier’s challenge) is not used. In fact, this function is 
only utilized for explanation purpose or in order to create sigma easily. Implemented in 
MATLAB, the “CreateSigma” function has five inputs. The letters “a” and “b” are used to 
represent the three different cases that we face in the actual implementation of the protocol, pi 
and ro represent the permutations (π and ρ), and finally, “n” is the number of nodes in the 
graphs. 
 
       In order to check the correctness of this function, we performed simulations with the values 
of n, π and ρ shown below. 
 
 
 
 
 
 
 
 
 

• a = b = 0 and a = b = 1  =>  σ = ρ-1  = {1, 4, 2, 3} 
 

• a = 1 and  b = 0  =>  σ = ρ-1○ π-1 = {3, 4, 1, 2} 
 

• a = 0 and  b = 1  =>  σ = ρ-1○ π = {2, 4, 3, 1} 
 
 
  

 
n = 4 

π = {2, 3, 1, 4} 
ρ = {1, 3, 4, 2} 
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The results shown below validate the logic used in the program. 
 
 

 
 

Figure 10: Computation of  when a = b = 0 
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Figure 11: Computation of  when a = b = 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Computation of  when a = 1 & b = 0 
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Figure 13: Computation of  when a = 0 & b = 1 

 
Applying the “CreateSigma” function to the example given in the reference, the following 

table is obtained, where the sigma (σ) could only take the values in the colored rows. 
 

Table 1: Updated list of the permutations in the reference 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 0 1 2 3 4 5 6 7 8 9 

 Pi 5 1 9 0 7 4 3 6 2 8 

 Ro 7 8 1 3 0 5 2 4 6 9 

invPi 3 1 8 6 5 0 7 4 9 2 

invRo 4 2 6 3 7 5 8 0 1 9 

invRo* invPi 5 8 7 6 4 0  9 3 1 2 

invRo* Pi 7 9 3 0 6 4 2 5 1 8 
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3.3 Modifications to the example described in the reference paper [1] 

Let us now consider the example given in the reference. Since MATLAB does not support 
index value of zero, we replace index “0” with “10”. Doing so, we will also be consistent with 
the adjacency matrix of the graph H1 shown in Figure 2a (in the reference). Let us assume that 
this adjacency matrix is obtained by applying the permutation ρ to the original graph G1. 
Therefore, in order to obtain the adjacency matrix of the graph G1, we need to compute H1*ρ-1.  
From reference [1], we have:  π = {5, 1, 9, 0, 7, 4, 3, 6, 2, 8} and ρ = {7, 8, 1, 3, 0, 5, 2, 4, 6, 9} 
 

For the MATLAB implementation, we will use:  n = 10, π = {5, 1, 9, 10, 7, 4, 3, 6, 2, 8} and   
ρ = {7, 8, 1, 3, 10, 5, 2, 4, 6, 9} 
 

Based on the above assumptions, we have obtained the following permutations using the 
“CreateSigma” function. 

 
ρ-1 = {3, 7, 4, 8, 6, 9, 1, 2, 10, 5} 

     ρ-1○ π-1 = {7, 5, 6, 10, 8, 3, 2, 9, 4, 1} 
     ρ-1○ π  = {9, 3, 10, 6, 4, 2, 5, 1, 8, 7} 
   
     Applying ρ -1 to the adjacency matrix shown in Figure 2a in the reference, we obtain the graph 
G1 shown below. 
 

 
Figure 14: Adjacency matrix representation of G1 = H1 * -1 
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The MATLAB command window displayed while obtaining the original graph G1 is shown in 
figure 15. 
 

 
 

Figure 15: Computation of G1 = H1 * ρ-1 
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Based on the adjacency matrix of graph G1, we will now obtain the adjacency matrices of G2, 
and H2 = G2*ρ as shown in figures 16 and 17. 
 

 
 

Figure 16: Computation of G2 = G1 * Π 
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Figure 17: Computation of H2 = G2 * ρ 
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Once these adjacency matrices obtained, we used the Wolfram Mathematica tool to plot their 
corresponding graphs as displayed in figures 18 though 21. 
 

 
 

Figure 18: Graph G1 and its adjacency matrix 
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Figure 19: Graph H1 and its adjacency matrix 
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Figure 20: Graph G2 and its adjacency matrix 
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Figure 21: Graph H2 and its adjacency matrix 
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The graphs illustrate the characteristics of graph isomorphism. In fact, there is a bijection 
between the vertices set of G1, G2, H1, and H2. For instance, in order to obtain the graph H1, the 
vertices of G1 were relabeled according to the permutation ρ = {7, 8, 1, 3, 10, 5, 2, 4, 6, 9}. This 
means that the node 1 of G1 becomes node 7 of the graph H1, node 2 becomes node 8 and so on. 
This can be seen on the graphs obtained above. However, since we have rearranged the nodes so 
as to have them in order (i.e. from 1 to 10), in order to verify the isomorphism, one should 
consider the edges of each of the nodes. For example node 1 of G1 has four edges as node 7 of 
H1. Moreover if you consider node 9 of G1 which has the highest number of edges (8), it 
becomes node 6 of H1. 
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4. RESULTS AND DISCUSSIONS 

We have successfully implemented using the MATLAB application the ZKP protocol. The 
developed code could be modified in order to obtain a better user friendly interactive system.   
However, the graph isomorphism scheme that we have used as the basis for the implementation 
of the ZKP protocol, requires appropriate selection of graphs. 

 
Our goal is to find out the types of graphs whose isomorphism is hard to break using tools 

such as Nauty [2]. We first started with regular graphs that have low automorphs, as suggested 
by Michael Gudaitis at AFRL. Regular graphs having only one automorph (i.e. only isomorphic 
to itself), are one type of graphs that we studied, since they have higher graph isomorphism 
complexity. However, algorithms such as Nauty exploit the patterns in graphs to break the graph 
isomorphism. 
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5. TESTS WITH NAUTY 

 
Prior to testing the performance of Nauty using regular graphs with only one automorph, we 

will go through one of the examples provided in the Nauty User’s Guide (Version2.2) by 
Brendan D. McKay in order to have an understanding of how the program is run. 

 
 

 
 
 

Let g a graph as represented in the above figure. Our goal is to find all the automorphs to g 
using the Nauty program. The program provides different commands that are used in order to run 
a test. Obtained from the Nauty User’s Guide, below are the lists and brief explanations of the 
commands that we have used in our tests. 
 
 

n= #: Set value of n (number of nodes). The maximum value is installation-defined. 
 
g: Read the graph g. 
 
c,-c:  Set option getcanon to TRUE or FALSE, respectively. This tells Nauty whether to 
find a canonical labeling or just the automorphism group. The default is FALSE. 

 
a,-a:  Set option writeautoms to TRUE or FALSE, respectively. This tells Nauty whether 
to display the automorphisms it finds. The default is TRUE. 
 
m,-m:  Set option writemarkers to TRUE or FALSE, respectively. This tells Nauty 
whether to display the level markers “level . . . ” 
 
p,-p:  Set option cartesian to TRUE or FALSE, respectively. This tells Nauty to use the 
“cartesian” form when writing the automorphisms.  
 
x: Execute Nauty. Depending on the values of the writeautoms and writemarkers options, 
the automorphism group will be displayed while Nauty is running. When Nauty returns, 
dreadnaut will display some statistics about it. Depending on your system, the execution 
time is also displayed. 
 
@: Copy h, if defined, to h0. See the description of the # command for more information. 
 
#: Compare the labeled graphs h and h0. Both must have been already defined (using x 
and @).  
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The complete process for testing two graphs g1 and g2 for isomorphism is this: 
 
enter g1; 
c x @ (select getcanon option, execute Nauty, copy h to h0); 
enter g2; 
x # (execute Nauty, compare h to h0). 
 
##: This is the same as # except that, if h is identical to h0, you will also be given an 
isomorphism from g1 to g2. This is in the form of a sequence of pairs’ vi-wi, where vi is a 
vertex of g1 and wi is a vertex of g2. The vertex-numbering origin in force when h0 was 
created is used for g1, whilst the origin now in force is used for g2. 

 
 
The outputs obtained when the program is run can be interpreted as follows: 
 

int numorbits: The number of orbits of the automorphism group. 
 
int numgenerators: The number of generators found. 
 
long numnodes: The total number of tree nodes generated. 
 
long numbadleaves: The number of leaves of the tree which were generated but were 
useless in the sense that no automorphism was thereby discovered and the current-best-
guess at the canonical labeling was not updated. 
 
int maxlevel: The maximum level of any generated tree node. The root of the tree is on 
level one. 
 
long tctotal: The total size of all the target cells in the search tree. The difference between 
this value and numnodes provides an estimate of the efficiency of Nauty’s search-tree 
pruning. 
 
long canupdates: The number of times the program’s idea of the “best candidate for 
canonical label” was updated, including the original one. 
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Test1: (Provided in the Nauty User’s Guide) 
 

eestudent@eeuser-LINUX:~/Desktop/nauty22$ ./dreadnaut 
Dreadnaut version 2.2 (32 bits). 
> n=8 g 
 0 : 1 3 4; 
 1 : 2 5; 
 2 : 3 6; 
 3 : 7; 
 4 : 5 7; 
 5 : 6; 
 6 : 7. 
> p a c m 
> x 
 0 1 5 4 3 2 6 7 
level 3:  6 orbits; 3 fixed; index 2 
 0 3 2 1 4 7 6 5 
level 2:  4 orbits; 1 fixed; index 3 
 1 0 3 2 5 4 7 6 
level 1:  1 orbit; 0 fixed; index 8 
1 orbit; grpsize=48; 3 gens; 10 nodes; maxlev=4 
tctotal=20; canupdates=1; cpu time = 0.00 seconds 

 
The results of this test show that there are three isomorphisms to the graph g. In fact, if we 
consider the graph g we can clearly notice that switching 2-5 and 3-4 does not affect the structure 
of the graph. 
 
Now that we have an idea of how the program works, let begin testing with the regular graphs 
with one automorph. We use the notation NxxEyy to represent a regular graph, where xx denotes 
the number of nodes and yy denotes the number of edges for each node. 
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Test2: Graph-N10E5 
 

eestudent@eeuser-LINUX:~/Desktop/nauty22$ ./dreadnaut 
Dreadnaut version 2.2 (32 bits). 
> n=10 g 
 0 : 1 2 3 5 7; 
 1 : 3 4 6 8; 
 2 : 5 6 7 9; 
 3 : 4 5 6; 
 4 : 7 8 9; 
 5 : 8 9; 
 6 : 8 9; 
 7 : 8 9. 
> p a m c  
> x 
level 1:  1 cell; 10 orbits; 0 fixed; index 1/10 
10 orbits; grpsize=1; 0 gens; 11 nodes (7 bad leaves); maxlev=2 
tctotal=10; canupdates=3; cpu time = 0.00 seconds 

 
From the interpretation of the outputs, we can say that this graph does not have any other 
automorphs other than itself. 
 
 
Test3: Graph-N11E6 
 

> n=11 g 
 0 : 2 3 4 7 8 9; 
 1 : 3 4 5 8 9 10; 
 2 : 4 6 8 9 10; 
 3 : 5 7 9 10; 
 4 : 6 7 8; 
 5 : 6 7 9 10; 
 6 : 8 10; 
 7 : 9; 
 8 : 10. 
> p 
> a 
> c 
> m 
> x 
11 orbits; grpsize=1; 0 gens; 1 node; maxlev=1 
tctotal=0; canupdates=1; cpu time = 0.00 seconds 
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Test4: Graph-N12E6 
 

> n=12 g 
 0 : 1 2 3 5 7 10 
 0 : 1 2 3 5 7 10; 
 1 : 3 4 6 8 11; 
 2 : 5 6 7 9 10; 
 3 : 4 5 6 11; 
 4 : 7 8 9 10; 
 5 : 8 9 10; 
 6 : 8 9 11; 
 7 : 8 9 10; 
 8 : 11; 
 9 : 11; 
10 : 11. 
> p a c m 
> x 
level 1:  1 cell; 12 orbits; 0 fixed; index 1/12 
12 orbits; grpsize=1; 0 gens; 13 nodes (9 bad leaves); maxlev=2 
tctotal=12; canupdates=3; cpu time = 0.00 seconds 

 
 
Test5: Graph-N13E6 
 

> n=13 g 
 0 : 2 4 6 7 10 11; 
 1 : 3 6 7 8 9 12; 
 2 : 4 7 8 9 11; 
 3 : 5 6 9 10 12; 
 4 : 6 8 10 11; 
 5 : 7 8 9 11 12; 
 6 : 8 12; 
 7 : 9 10; 
 8 : 10; 
 9 : 11; 
10 : 12; 
11 : 12. 
> p a c m 
> x 
level 1:  1 cell; 13 orbits; 0 fixed; index 1/13 
13 orbits; grpsize=1; 0 gens; 14 nodes (11 bad leaves); maxlev=2 
tctotal=13; canupdates=2; cpu time = 0.00 seconds 
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Test6: Graph-N14E7 
 

> n=14 g 
 0 : 1 2 3 5 7 10 12; 
 1 : 3 4 6 8 11 12; 
 2 : 5 6 7 9 10 13; 
 3 : 4 5 6 11 12; 
 4 : 7 8 9 10 13; 
 5 : 8 9 10 12; 
 6 : 8 9 11 13; 
 7 : 8 9 10 12; 
 8 : 11 12; 
 9 : 11 13; 
10 : 11 13; 
11 : 13; 
12 : 13. 
>  p a c m 
> x 
level 1:  1 cell; 14 orbits; 0 fixed; index 1/14 
14 orbits; grpsize=1; 0 gens; 15 nodes (12 bad leaves); maxlev=2 
tctotal=14; canupdates=2; cpu time = 0.00 seconds 

 
 
As per the results of the different tests, these graphs exhibit the property of having only one 
automorph. However, these results were obtained by Nauty in less than a second. We have then 
decided using the same graphs to test how long it will take the program to check if two graphs 
are isomorphic. The tests for finding graph isomorphism have only been performed on N10E5 
and N14E7. 
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Test7: Graph-N10E5 
 
Using MATLAB, a random permutation ({1 0 2 3 4 5 8 7 9 6}) has been chosen and applied to 
graph N10E5 in order to obtain another graph N10E5’.  
 

n = 
 
    10 
 
>> GB=[0 1 1 1 0 1 0 1 0 0;1 0 0 1 1 0 1 0 1 0;1 0 0 0 0 1 1 1 0 
1;1 1 0 0 1 1 1 0 0 0;0 1 0 1 0 0 0 1 1 1;1 0 1 1 0 0 0 0 1 1;0 1 
1 1 0 0 0 0 1 1;1 0 1 0 1 0 0 0 1 1;0 1 0 0 1 1 1 1 0 0;0 0 1 0 1 
1 1 1 0 0] 
 
 
 
GB = 
 
     0     1     1     1     0     1     0     1     0     0 
     1     0     0     1     1     0     1     0     1     0 
     1     0     0     0     0     1     1     1     0     1 
     1     1     0     0     1     1     1     0     0     0 
     0     1     0     1     0     0     0     1     1     1 
     1     0     1     1     0     0     0     0     1     1 
     0     1     1     1     0     0     0     0     1     1 
     1     0     1     0     1     0     0     0     1     1 
     0     1     0     0     1     1     1     1     0     0 
     0     0     1     0     1     1     1     1     0     0 
 
>> sigma=[2 1 3 4 5 6 9 8 10 7] 
 
sigma = 
 
     2     1     3     4     5     6     9     8    10     7 
 
>> ApplyPermutation (GB,sigma,n) 
 
ans = 
 
     0     1     0     1     1     0     0     0     1     1 
     1     0     1     1     0     1     0     1     0     0 
     0     1     0     0     0     1     1     1     1     0 
     1     1     0     0     1     1     0     0     1     0 
     1     0     0     1     0     0     1     1     0     1 
     0     1     1     1     0     0     1     0     0     1 
     0     0     1     0     1     1     0     1     1     0 
     0     1     1     0     1     0     1     0     0     1 
     1     0     1     1     0     0     1     0     0     1 
     1     0     0     0     1     1     0     1     1     0 
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Using the resulting graph N10E5’, we proceeded to the test as follows: 
 

eestudent@eeuser-LINUX:~/Desktop/nauty22$ ./dreadnaut 
Dreadnaut version 2.2 (32 bits). 
> n=10 g                   
 0 : 1 2 3 5 7; 
 1 : 3 4 6 8; 
 2 : 5 6 7 9; 
 3 : 4 5 6; 
 4 : 7 8 9; 
 5 : 8 9; 
 6 : 8 9; 
 7 : 8 9. 
> x @ 
10 orbits; grpsize=1; 0 gens; 11 nodes (7 bad leaves); maxlev=2 
tctotal=10; canupdates=3; cpu time = 0.00 seconds 
> g 
 0 : 1 3 4 8 9; 
 1 : 2 3 5 7; 
 2 : 5 6 7 8; 
 3 : 4 5 8; 
 4 : 6 7 9; 
 5 : 6 9; 
 6 : 7 8; 
 7 : 9; 
 8 : 9. 
> x 
10 orbits; grpsize=1; 0 gens; 11 nodes (8 bad leaves); maxlev=2 
tctotal=10; canupdates=2; cpu time = 0.00 seconds 
> ## 
h and h' are identical. 
 0-1 1-0 2-2 3-3 4-4 5-5 6-8 7-7 8-9 9-6 

 
Nauty has in this case also solved the problem in less than a second. It also provides the 
permutation which applied to N10E5 gives us N10E5’. 
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Test8: Graph-N14E7 
 

>> n=14 
 
n = 
 
    14 
 
>> GB=[0 1 1 1 0 1 0 1 0 0 1 0 1 0;1 0 0 1 1 0 1 0 1 0 0 1 1 0;1 0 0 0 
0 1 1 1 0 1 1 0 0 1;1 1 0 0 1 1 1 0 0 0 0 1 1 0;0 1 0 1 0 0 0 1 1 1 1 0 
0 1;1 0 1 1 0 0 0 0 1 1 1 0 1 0;0 1 1 1 0 0 0 0 1 1 0 1 0 1;1 0 1 0 1 0 
0 0 1 1 1 0 1 0;0 1 0 0 1 1 1 1 0 0 0 1 1 0; 0 0 1 0 1 1 1 1 0 0 0 1 0 
1;1 0 1 0 1 1 0 1 0 0 0 1 0 1;0 1 0 1 0 0 1 0 1 1 1 0 0 1; 
1 1 0 1 0 1 0 1 1 0 0 0 0 1;0 0 1 0 1 0 1 0 0 1 1 1 1 0]  
 
 
GB = 
 

0     1     1     1     0     1     0     1     0     0     1     0     1     0 
1     0     0     1     1     0     1     0     1     0     0     1     1     0 
1     0     0     0     0     1     1     1     0     1     1     0     0     1 
1     1     0     0     1     1     1     0     0     0     0     1     1     0 
0     1     0     1     0     0     0     1     1     1     1     0     0     1 
1     0     1     1     0     0     0     0     1     1     1     0     1     0 
0     1     1     1     0     0     0     0     1     1     0     1     0     1 
1     0     1     0     1     0     0     0     1     1     1     0     1     0 
0     1     0     0     1     1     1     1     0     0     0     1     1     0 
0     0     1     0     1     1     1     1     0     0     0     1     0     1 
1     0     1     0     1     1     0     1     0     0     0     1     0     1 
0     1     0     1     0     0     1     0     1     1     1     0     0     1 
1     1     0     1     0     1     0     1     1     0     0     0     0     1 

     0     0     1     0     1     0     1     0     0     1     1     1     1     0 
 
>> sigma=[1 5 2 4 7 8 3 6 10 9 11 13 12 14] 
 
sigma = 
 
     1     5     2     4     7     8     3     6    10     9    11    
13    12    14 
 
>> ApplyPermutation (GB,sigma,n) 
 
ans = 
 

     0     1     0     1     1     1     0     1     0     0     1     1     0     0 
     1     0     1     0     0     1     0     1     1     0     1     0     0     1 
     0     1     0     1     1     0     0     0     1     1     0     0     1     1 
     1     0     1     0     1     0     1     1     0     0     0     1     1     0 
     1     0     1     1     0     0     1     0     0     1     0     1     1     0 
     1     1     0     0     0     0     1     0     1     1     1     1     0     0 
     0     0     0     1     1     1     0     0     1     1     1     0     0     1 
     1     1     0     1     0     0     0     0     1     1     1     1     0     0 
     0     1     1     0     0     1     1     1     0     0     0     0     1     1 
     0     0     1     0     1     1     1     1     0     0     0     1     1     0 
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     1     1     0     0     0     1     1     1     0     0     0     0     1     1 
     1     0     0     1     1     1     0     1     0     1     0     0     0     1 
     0     0     1     1     1     0     0     0     1     1     1     0     0     1 
     0     1     1     0     0     0     1     0     1     0     1     1     1     0 

 
 
 
The results are as follows: 
 

eestudent@eeuser-LINUX:~/Desktop/nauty22$ ./dreadnaut 
Dreadnaut version 2.2 (32 bits). 
> n=14 g 
 0 : 1 2 3 5 7 10 12; 
 1 : 3 4 6 8 11 12; 
 2 : 5 6 7 9 10 13; 
 3 : 4 5 6 11 12; 
 4 : 7 8 9 10 13; 
 5 : 8 9 10 12; 
 6 : 8 9 11 13; 
 7 : 8 9 10 12; 
 8 : 11 12; 
 9 : 11 13; 
10 : 11 13; 
11 : 13; 
12 : 13. 
> c -a -m 
> x@ 
14 orbits; grpsize=1; 0 gens; 15 nodes (12 bad leaves); maxlev=2 
tctotal=14; canupdates=2; cpu time = 0.00 seconds 
> g 
 0 : 1 3 4 5 7 10 11; 
 1 : 2 5 7 8 10 13; 
 2 : 3 4 8 9 12 13; 
 3 : 4 6 7 11 12; 
 4 : 6 9 11 12; 
 5 : 6 8 9 10 11; 
 6 : 8 9 10 13; 
 7 : 8 9 10 11; 
 8 : 12 13; 
 9 : 11 12; 
10 : 12 13; 
11 : 13; 
12 : 13. 
> x 
14 orbits; grpsize=1; 0 gens; 15 nodes (12 bad leaves); maxlev=2 
tctotal=14; canupdates=2; cpu time = 0.00 seconds 
> ## 
h and h' are identical. 
 0-0 1-4 2-1 3-3 4-6 5-7 6-2 7-5 8-9 9-8 10-10 11-12 12-11 13-13 

 
 
We also tested non-isomorphic graphs with Nauty. 
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Test9: Graph-N10E5 
 
We created N10E5’ from N10E5 such that the two graphs are not isomorphic.  
 

eestudent@eeuser-LINUX:~/Desktop/nauty22$ ./dreadnaut 
Dreadnaut version 2.2 (32 bits). 
> n=10 g 
 0 : 1 2 3 5 7; 
 1 : 3 4 6 8; 
 2 : 5 6 7 9; 
 3 : 4 5 6; 
 4 : 7 8 9; 
 5 : 8 9; 
 6 : 8 9; 
 7 : 8 9. 
> c-a-m 
> x @ 
10 orbits; grpsize=1; 0 gens; 11 nodes (7 bad leaves); maxlev=2 
tctotal=10; canupdates=3; cpu time = 0.00 seconds 
> g 
 0 : 1 3 4 8 9 
 0 : 1 3 4 8 9; 
 1 : 2 3 5 6; 
 2 : 5 6 7 8; 
 3 : 4 5 8; 
 4 : 6 7 9; 
 5 : 6 9; 
 6 : 7 8; 
 7 : 9; 
 8 : 9. 
> x 
10 orbits; grpsize=1; 0 gens; 1 node; maxlev=1 
tctotal=0; canupdates=1; cpu time = 0.00 seconds 
> ## 
h and h' are different. 

 
In this case also, Nauty found the answer in less than a second. 
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6. CONCLUSIONS 

Our experimental results provide partial conclusions only at this point. We intend to continue 
this work during the next several months to obtain conclusive results regarding the suitability of 
graph isomorphism based approach for ZKP protocol implementation. We are experimenting 
with the following types of graphs. 
 

1. Regular, but not strongly regular graphs with the same number of connections 
(degree) for each node, 

2. Graphs with low number of automorphs, and 
3. Node degree about 1/2 of the number of nodes 

 
We plan to generate graphs with the above characteristics and analyze the complexity of 
breaking their graph isomorphism using Nauty and other tools such as VF2. 
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8. APPENDIX A  

ZKP PROTOCOL 

 
a) Main Code 

 
i=0;j=0; 
n = input('The value of n is:'); 
Repeat = input ('Start the interaction? (1: Yes, 0: No):'); 
  
G1 = input('The value of the original graph G1 is: G1='); 
  
pi = input('The value of the secret pi is:'); 
  
ro = input('The value of ro is:'); 
  
%Creating the graph G2 
G2=MakeIsomorphic(G1,pi,n); 
  
while Repeat == 1 
    g = input('Choose the graph from which to create the graph H to 
give the verifier (0:G1,1:G2):'); 
  
    if g==0 
        H=MakeIsomorphic(G1,ro,n); 
    else 
        H=MakeIsomorphic(G2,ro,n); 
    end 
  
    q = input ('The verifier randomly chooses a graph for the prover 
to generate(1:G1,2:G2):'); 
  
    sigma = input('The value of sigma is:'); 
  
    if(q==0) 
  
        R=ApplyPermutation(H,sigma,n); 
        CheckGraphs(G1,R,n); 
  
    elseif(q==1) 
  
        R=ApplyPermutation(H,sigma,n); 
        CheckGraphs(G2,R,n); 
    end 
  
    Repeat=input('\nDoes the verifier want to repeat the 
process?(1:Yes,0:No):'); 
  
End 
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b) “MakeIsomorphic” function 
 

function[H] = MakeIsomorphic(Ga,A,n) 
for i=1:n 
    for j=1:n 
     H(A(i),A(j))= Ga(i,j); 
    end 
end 
 
 
 

c) “ApplyPermutation” function 
 

function [R]= ApplyPermutation (GB,sigma,n) 
for i=1:n 
    for j=1:n 
        R(sigma(i),sigma(j))=GB(i,j); 
    end 
end 
 
 
 

d) “CheckGraphs” function 
 

function[x]= CheckGraphs(GB,R,n) 
p=1; 
for i=1:n 
    for j=1:n 
        if GB(i,j)~=R(i,j) 
            p=0; 
            break; 
        end 
    end 
  
end 
  
if p==0 
    disp ('The prover is proved wrong! He does not know the secret!'); 
elseif p==1 
    disp('The prover has proved himself!'); 
end 
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e) “CreateSigma” function 
 
function[sigma] = CreateSigma (a,b,pi,ro,n) 
for i=1:n 
if (a==0&&b==0 || a==1&&b==1) 
     
        sigma(ro(i))=i; 
    
elseif(a==1&&b==0) 
    
        sigma(ro(pi(i)))=i; 
   
elseif(a==0&&b==1) 
     
        sigma(ro(i))= pi(i); 
    end 
end 
end 
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9. APPENDIX  B 

 

ABSTRACT OF THE PRESENTATION MADE IN NATO SPONSORED CONFERENCE HELD 
IN SLOVENIA, PRESENTED BY BRENT HOLMES, KAMESH NAMUDURI AND CAPT. RICO 

CODY. 

Trust is a fundamental concept that enables cooperation and collaboration among the nodes 
in any network. Formal trust models are necessary for sharing information in a collaborative 
environment. Trust assessment methods that are commonly used in terrestrial network 
applications or in social networks passively gather information about other nodes and take 
significant amount of time for assessing trust. Such models are not suitable for tactical airborne 
networks which are typically deployed for short durations of time. 

This paper presents an active trust model in which the nodes in a network proactively probe 
other nodes to assess their level of trust before sharing mission specific information. Active trust 
models are useful for assessing trust within short durations of time making them appropriate for 
airborne networks. The proposed model is based on zero-knowledge proofs.  
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10. APPENDIX C 

 
ABSTRACT OF THE PRESENTATION MADE IN INTERNATIONAL CONFERENCE ON 
COMPUTING, COMMNUNICATIONS, AND NETWORKING  HELD IN KARUR, INDIA 

 
Title:  Consensus building in cooperative decentralized systems 

 
This talk discusses approaches to consensus building and task assignment problems in 

decentralized systems  consisting groups of collaborating nodes. Consensus building is an 
important and fundamental problem in numerous  real-world applications including disaster 
recovery, and search and rescue operations conducted by teams of people.  Exploration of 
planetary surfaces by teams of robots and aerial surveillance for ground targets are some of the 
high-end  applications that require elegant theoretical models and solutions to task assignment. 
 

The problem setting for the research issues addressed in this talk  is as follows. Consider a 
decentralized system (say, an ad hoc network) consisting of N number of nodes, divided into M 
groups, with each group formed by a variable number of nodes. In each group, one node serves 
as a leader and functions as a fusion center. All nodes in the system are assumed to have the 
capability to communicate with their group members. A node may participate as a member in 
more than one group. All nodes are capable of sensing, processing information locally, and 
communicating with their leaders. Direct communication among peers is not allowed, i.e, 
member nodes are not allowed to communicate with each other, and leaders are not allowed to 
communicate with other leaders. Each node processes the information it gathers about the 
phenomenon that it observes, and communicates its observation to the leader that it is connected 
to. The objective is to design strategies for decision making and task scheduling, which are 
central to such decentralized cooperative systems. Decision making involves coming to an 
agreement on the observed phenomenon. Task scheduling involves coming to consensus on the 
one-to-one mapping between the nodes and the tasks to be accomplished. The proposed 
strategies are based on two fundamental ideas originated from the two different fields: (1) 
decision fusion based on belief propagation and self-organization based on coupled selection 
equations in dynamic control systems. Decision fusion based on belief propagation is relatively a 
new area of research in decentralized systems. Developed by Gallager with applications in 
channel coding and communications in 1963, belief propagation makes use of local interactions 
to arrive at a global consensus.  It is applicable for ad hoc networks such as airborne networks, 
sensor networks, and social networks in which the nodes are typically connected with only their 
neighboring nodes. 
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11. APPENDIX  D 

 

ABSTRACT OF THE PAPER SUBMITTED TO NSF SPONSORED MEETING ON CYBER 
PHYSICAL SYSTEMS (WITH BRENT HOLMES) 

 
The aviation infrastructure forms an important component of the nation’s critical 

infrastructure. By considering the issues involved in protecting the onboard aviation information 
in conjunction with the introduction of Internet access within an airplane, we propose to 
investigate the risks, vulnerabilities, and threats in providing network connectivity to airplanes 
and a comprehensive set of supplementary security mechanisms to address these issues. 

 
The first objective of the proposed discussion is to develop security and fault-tolerance 

solutions to the existing air-ground communication systems. The second objective is to 
investigate, design, and develop off-board control methods that would enable the ground crew to 
override the on-board control mechanism in the event of malicious takeover of an airplane. 
These objectives will be achieved by investigating the following four specific aspects of onboard 
information assurance. 

 
(1)  Identifying the risks, vulnerabilities, and threats 

 (2) Methods for downloading onboard aircraft parameters  
 (3) Air-ground network security and performance, and  
 (4) Off-line control mechanisms 
 
The most significant result of the proposed work is a set of guidelines and best practices for 

securing onboard aircraft information suitable for practical implementation. The proposed 
activities also open up avenues for greater collaboration between universities and aviation 
industry resulting in safety and security of our nation’s aviation infrastructure.  
 
 




